Dilations of partial representations

Fernando Abadie Vicens

Centro de Matemática-FC Universidad de la República-Uruguay

PARS, Gramado, 11-15/5/2014

2 Dilations of partial representations on Hilbert spaces

3 Dilations of certain interaction groups

- **(**) Representations of $k_{par}(G) \leftrightarrow$ partial representations of G.
- Representations of a partial crossed product ↔ covariant representations of the corresponding partial system.
- Partial representations \neq partial actions.
- Oilation of partial representations should be related with globalization of partial actions.
- Solution of the existence of enveloping actions: if v : G → B(H) is a partial representation of a discrete group G on a Hilbert space H, there exist:
 - a Hilbert space K which contains H as a Hilbert subspace,
 - a unitary representation $u: G \to B(K)$,
 - an orthogonal projection $P: K \to H$,

such that $v_t = Pu_t|_H$, $\forall t \in G$.

Interaction groups.

- A partial action α on a commutative C*-algebra has an enveloping action if and only if the graph of $\hat{\alpha}$ is closed (FA, 2003).
- Corollary: a partial action on a commutative and unital C*-algebra has an enveloping action iff every ideal of the partial action is unital.
- A partial action on a unital algebra has an enveloping action iff every ideal of the partial action is unital (Dokuchaev-Exel, 2005).
- Observation: in the proof of the latter result the authors dilate the partial representation v : G → End_{alg}(A) such that v_t(a) = α_t(a1_{t⁻¹}).

Definition

A partial homomorphism of a group G into a monoid S is a map $v: G \to S$ such that

• $v_e = 1_S$, where e is the unit element of G.

•
$$v_r v_{r-1} v_s = v_r v_{r-1s}, \forall r, s \in G$$

• $v_r v_{s^{-1}} v_s = v_{rs^{-1}} v_s$, $\forall r, s \in G$

When $S = \text{End}_{\mathscr{C}}(X)$, for certain object X in a category \mathscr{C} , we say that v is a partial representation of G on the object X.

Proposition (Structure of a partial representation)

Let $v : G \to \operatorname{End}_{Sets}(X)$ be a partial representation, $X_r := v_r(X)$, $\pi_r := v_r v_{r^{-1}}$, and $\alpha_r : X_{r^{-1}} \to X_r$ such that $\alpha_r(x) = v_r(x)$, $\forall r \in G$. Then: $\pi_r^2 = \pi_r, \pi_r(X) = X_r$, and $\pi_r \pi_s = \pi_s \pi_r, \forall r, s \in G$. $v_r = \alpha_r \pi_{r^{-1}}, \forall r \in G$. $\alpha := (\{X_r\}, \{\alpha_r\})$ is a partial action of G on X.

Example (model)

Let Y be a set, $u : G \to Aut_{Sets}(Y)$ a representation of G on Y, and $Q : Y \to Y$ such that $Q^2 = Q$. Suppose in additon that $Q_rQ_s = Q_sQ_r$, $\forall r, s \in G$, where $Q_r = u_rQu_{r^{-1}}$. If X := Q(Y) and $v : G \to End_{Sets}(X)$ is given by $v_t := Qu_t|_X$. Then v is a partial representation of G on X.

Definition

Let \mathscr{C} be a category. We define a category $\mathbb{T}_{\mathscr{C}}$.

Objects: (Y, u, Q) such that: $Y \in Ob(\mathscr{C})$, $u : G \to Aut_{\mathscr{C}}(Y)$, $Q \in End_{\mathscr{C}}(Y)$ is such that $Q^2 = Q$ and $Q_rQ_s = Q_sQ_r$, $\forall r, s \in G$.

Morphisms: $\varphi : (Y, u, Q) \to (Y', u', Q') \text{ is } \varphi \in \operatorname{Hom}_{\mathscr{C}}(Y, Y') \text{ such that} \\ \varphi u_t = u'_t \varphi \text{ and } \varphi Q = Q' \varphi.$

Definition

Let \mathscr{C} be one of the following categories: Sets, R-mod, or k-algebras. A dilation of a partial representation $v : G \to \text{End}_{\mathscr{C}}(X)$ is a pair (j, T) such that:

- $T = (Y, u, Q) \in Ob(\mathbb{T}_{\mathscr{C}})$
- ② $j \in Hom_{\mathscr{C}}(X, Y)$ is injective, and Q(Y) = j(X). In the case of *k*-algebras we also require that j(X) is an ideal of *Y*.

$$i v_t = Qu_t j, \ \forall t \in G.$$

The dilation is called minimal when Y is generated by $\bigcup_{t \in G} u_t(j(X))$.

Remark

In k-algebras, the condition $j(X) \triangleleft Y$ implies $v_t(X) \triangleleft X$, $\forall t$.

Proposition

If (j, (Y, u, Q)) is a dilation of a partial representation $v = \pi \alpha$, then $\alpha \cong u|_{j(X)}$. If the dilation is minimal, u is a minimal globalization of α .

Fernando Abadie Vicens (CMAT)

Dilations of partial representations

If $x \in X_{t^{-1}}$, then

$$j\alpha_t(x) = Qu_t j(x) = QQ_t u_t j(x) = Q_t Qu_t j(x) \in u_t(j(X)) \cap j(X).$$

Now if $j(y) = u_t j(z) \in j(X) \cap u_t j(X)$:

$$y = v_t(z)$$
 and $j(z) = Qj(z) = Qu_{t-1}j(y) = jv_{t-1}(y)$

It follows
$$y = \alpha_t(z)$$
, $j(X_t) = u_t(j(X)) \cap j(X)$ and $j(\alpha_t(z)) = u_t j(z)$.

Theorem

Any partial representation $v : G \to \operatorname{End}_{Sets}(X)$ admits a dilation. If the dilation D = (j, T) is minimal, then for any other dilation D' = (j', T') there exists a unique morphism $\varphi : D \to D'$. In particular any two minimal dilations of v are isomorphic.

•
$$\bar{X} = \{y : G \to X\}.$$

• $\rho : G \times \bar{X} \to \bar{X}$ such that $\rho_t(y)(s) := y(st).$
• $j : X \to \bar{X}: \quad j(x)(t) := v_t(x), \text{ and } Y = \bigcup_{t \in G} \rho_t(j(X)).$
• $Q : Y \to Y: \quad Q(y) := j(y(e)), \text{ and } u_t = \rho_t|_Y.$
• $j(X_t) = j(X) \cap u_t(j(X))$
• $u_t j(x) = j\alpha_t(x), \forall x \in X_{t^{-1}} \text{ and } t \in G.$
• $QQ_t(y)|_s = v_s v_t(y(t^{-1})) \text{ and } Q_t Q(y)|_s = v_{st} v_{t^{-1}}(y(e)).$
• $QQ_t(u_r j(x))|_s = v_s v_t v_{t^{-1}r}(x) \text{ and } Q_t Q(u_r j(x))|_s = v_{st} v_{t^{-1}} v_r(x)$

Then:

•
$$QQ_t = Q_t Q$$
 on Y

•
$$Qu_t j = j(u_t(j(x))(e)) = j(j(x)(t)) = j(v_t(x)) = jv_t(x)$$

The existence and uniqueness of the map φ follows from the universal property of the enveloping action. Finally:

$$Q'\varphi u_t j = Q'u'_t\varphi j = Q'u'_t j' = j'v_t = \varphi jv_t = \varphi Qu_t j$$

Theorem

Any partial representation $v : G \to \operatorname{End}_R(M)$ admits a minimal dilation (j, (N, u, Q)) which is **faithful**, i.e.: $Qu_t(n) = 0 \ \forall t \in G$ implies n = 0. In this case $u|_{j(M)} \cong \alpha$, where α is the partial action associated with v. Moreover, if D is a faithful and minimal dilation of v and D' = (j', (N', u', Q')) is another dilation of v, there exists a unique morphism $\varphi : D' \to D$ such that $\varphi j' = j$. In particular any two minimal and faithful dilations of v are isomorphic.

• $\overline{M} = \{y : G \to M\}$ with its natural structure of *R*-module. • $\rho : G \times \overline{M} \to \overline{M}$ such that $\rho_t(y)(s) := y(st)$. • $j : M \to \overline{M}$: $j(m)(t) := v_t(m)$, and $N = \operatorname{span}_{t \in G} \rho_t(j(M))$. • $Q : N \to N$: Q(m) := j(m(e)), and $u_t = \rho_t|_N$.

Then:

- $Qu_t j = jv_t$, $\forall t \in G$, and $\alpha \cong u|_{j(M)}$; therefore (j, u, N) is a minimal globalization of α in the category of *R*-modules.
- (j, (N, u, Q)) is faithful because $Q\rho_t(y) = j(y(t))$. If D' = (j', (N', u', Q')) is another dilation of v, and $\sum_{t \in G} u'_t j'(m_t) = 0$:

$$0 = Q'u'_r(\sum_{t\in G} u'_t j'(m_t)) = \sum_{t\in G} j'(v_{rt}(m_t)) = j'(\sum_{t\in G} v_{rt}(m_t)), \forall r \in G.$$

Then: $0 = j(\sum_{t \in G} v_{rt}(m_t)) = Qu_r(\sum_{t \in G} u_t(j(m_t))), \forall r.$ Define $\varphi : N' \to N$ such that $\varphi(\sum_t u'_t j'(m'_t)) := \sum_t u_t j(m'_t).$

Theorem

Let $v : G \to \operatorname{End}_{k-alg}(A)$ be a partial representation such that $v_t(A) \triangleleft A$, $\forall t \in G$. Then v admits a minimal dilation (j, T) which is faithful (again: $Qu_t(b) = 0 \ \forall t \in G$ implies b = 0) and such that $u|_{j(A)} \cong \alpha$, where α is the partial action associated with v. Moreover, if D = (j, T) is a faithful and minimal dilation of v and D' = (j', T') is another dilation of v, there exists a unique morphism $\varphi : T' \to T$ such that $\varphi j' = j$.

In particular any two minimal and faithful dilations of v are isomorphic.

- Consider again: Ā = {y : G → A} with its natural structure of k-algebra; ρ : G ×Ā →Ā such that ρ_t(y)(s) := y(st); j : A →Ā: j(a)(t) := v_t(a).
- Define $B := \langle \rho_t(j(A)) : t \in G \rangle$, $Q : B \to B$: Q(b) := j(b(e)), and $u_t = \rho_t|_B$.
- We have $j(A) \triangleleft B$ and $B = \operatorname{span}_{t \in G} \rho_t j(A)$:

$$|v_t(a)j(a')|_s = v_s v_{s^{-1}}(v_{st}(a)v_s(a')) = v_s(v_t(a)a') = j(v_t(a)a')|_s$$

$$j(a)u_t j(a')|_s = v_s v_{s^{-1}}(v_s(a)v_{st}(a')) = v_s(av_t(a')) = j(av_t(a'))|_s$$

As in the case of partial representations on modules, (j, (B, u, Q)) is a faithful and minimal dilation of v, $\alpha \cong u|_{j(A)}$; (j, u, B) is a minimal globalization of α in the category of *k*-algebras, and if D' = (j', (B', u', Q')) is another dilation of v, the map $\varphi : T' \to T$ such that $\varphi(\sum_t u'_t j'(a_t)) := \sum_t u_t j(a_t)$ is a homomorphism that satisfies $\varphi j' = j$.

Dilations of partial representations on Hilbert spaces

Recall:

(α, X) has enveloping action (β, Y): Y = {y : G → {0,1} : y ≠ 0}
 -which is a Hausdorff space- and β given by the same formula as α.

If E^{*}(G) := C(Y) ⋊_β G, then E^{*}(G) ^{MR} ⊂ C^{*}_p(G) (Morita-Rieffel equivalence). In fact C^{*}_p(G) is a hereditary subalgebra of E^{*}(G). Then:

partial rep.
$$v$$
 of $G \xrightarrow{\text{corresponds to}}$ unital rep. ρ of $C_{\rho}^{*}(G)$
dilates
unitary rep. u of $G \xrightarrow{\text{cov. rep.}} (\tilde{\pi}, u) \xrightarrow{\text{composes as}} \tilde{\rho}$ of $E^{*}(G)$

The Morita-Rieffel equivalence $C_p^*(G) \stackrel{MR}{\sim} E^*(G)$ follows from:

Theorem (FA 2003: reduced case; FA & Laura Martí 2009: full case)

Let $=(B_t)_{t\in G}$ be a Fell bundle, $\mathcal{E} = (E_t)_{t\in G}$ a right ideal of \mathcal{B} , and $\mathcal{A} = (A_t)_{t\in G}$ a sub-Fell bundle of \mathcal{B} contained in \mathcal{E} such that

- $2 \mathcal{E}\mathcal{E}^* \subseteq \mathcal{A}.$

Then $C^*_{red}(\mathcal{A})$ is a hereditary subalgebra of $C^*_{red}(\mathcal{B})$ and $C^*(\mathcal{A})$ is a hereditary subalgebra of $C^*(\mathcal{B})$. If, moreover, $\overline{\text{span}}(B_t \cap \mathcal{E}^*\mathcal{E}) = B_t$, $\forall t \in G$, then $C^*_{red}(\mathcal{A}) \overset{MR}{\sim} C^*_{red}(\mathcal{B})$ and $C^*(\mathcal{A}) \overset{MR}{\sim} C^*(\mathcal{B})$.

Corollary (FA 2003: reduced case; FA & L. Martí 2009: full case)

If $\beta G \times B \to B$ is a globalization of the partial action α on A, then $A \rtimes_{red,\alpha} G$ is a hereditary subalgebra of $B \rtimes_{red,\beta} G$, and $A \rtimes_{\alpha} G$ is a hereditary subalgebra of $B \rtimes_{\beta} G$. If β is the enveloping action of α , then $A \rtimes_{red,\alpha} G \overset{MR}{\sim} B \rtimes_{red,\beta} G$ and $A \rtimes_{\alpha} G \overset{MR}{\sim} B \rtimes_{\beta} G$.

Definition

An interaction group is a triple (A, G, V) where A is a unital C^{*}-algebra, G is a group, and V is a map from G into B(A), which satisfies:

- V_t is a positive unital map, $\forall t \in G$.
- **2** *V* is a partial representation.
- $V_t(ab) = V_t(a)V_t(b)$ if either a or b belongs to $V_{t^{-1}}(A)$.

Example

Let X be a compact Hausdorff space and $\theta : X \to X$ a surjective continuous map. Consider the unital injective endomorphism $\alpha : C(X) \to C(X)$ induced by $\theta : \alpha(a) = a \circ \theta$. Suppose there exists a unital transfer operator for α , i.e., a positive linear map $\mathcal{L} : C(X) \to C(X)$ such that $\mathcal{L}(\alpha(a)b) = a\mathcal{L}(b), \forall a, b \in C(X)$. Then $V : \mathbb{Z} \to B(C(X))$ such that $V_n = \begin{cases} \alpha^n & n \ge 0\\ \mathcal{L}^{-n} & n \le 0 \end{cases}$ is an interaction group.

Example

Suppose $F : B \to B$ is a conditional expectation with range A, $\beta : G \times B \to B$ is an action such that $F_rF_s = F_sF_r$, $\forall r, s \in G$, where $F_r = \beta_r F \beta_{r^{-1}}$. If $F \beta_r F(1) = 1$, $\forall r$, then $V : G \to B(A)$ such that $V_t = F \beta_t|_A$ is an interaction group.

Theorem

Let P be a submonoid of a group G such that $G = P^{-1}P$, and let α be an action of P by unital injective endomorphisms of the unital C*-algebra A, and suppose $V : G \to B(A)$ is an interaction group such that $V|_P = \alpha$. Then V has a minimal dilation (i, T), where $T = (B, \beta, F)$ and $i : A \to B$ is an embedding, which has the following universal property. If $(i', (B', \beta', F'))$ is another dilation of V, then there exists a unique morphism $\phi : (B, \beta, F) \to (B', \beta', F')$ such that $\phi i = i'$. Therefore the dilation (i, T) is unique up to isomorphism.

Theorem (Marcelo Laca, 2000)

There exists a C^* -dynamical system (B, G, β) , unique up to isomorphism, consisting of an action β of G by automorphisms of a C^* -algebra B and an embedding $i : A \rightarrow B$ such that:

() β dilates α , that is, $\beta_t \circ i = i \circ \alpha_t$, for t in P, and

2 (B, G, β) is minimal, that is, $\bigcup_{t \in P} \beta_t^{-1}(i(A))$ is dense in B.

There is a partial order in $P: r \le s \iff s = tr$, for some $t \in P$. Suppose $r, s \in P$, with $r \le s$, and $a_r, a_s \in A$ are such that $\beta_{r-1}(a_r) = \beta_{s-1}(a_s)$, then $\beta_{sr-1}(a_r) = a_s$, so $\alpha_{sr-1}(a_r) = a_s$. Then: $V_{s^{-1}}(a_s) = V_{s^{-1}}\alpha_{sr-1}(a_r) = V_{s^{-1}}V_{sr-1}(a_r) = V_{s^{-1}}\alpha_s V_{r-1}(a_r) = V_{r-1}(a_r)$. Define $F: B \to B$ such that $F(b) = V_{t-1}(\beta_t(b))$, $\forall b \in \beta_{t-1}(A)$. Suppose $t = r^{-1}s \in G$, with $r, s \in P$. We have $F\beta = F\beta$, $\beta = F\beta$, $\beta = F\beta$, $\alpha_r = V_r$, $\alpha_r = V_r$, $V_r = V_r$.

$$F\beta_{t}|_{A} = F\beta_{r^{-1}}\beta_{rt}|_{A} = F\beta_{r^{-1}}\alpha_{s} = V_{r^{-1}}\alpha_{s} = V_{r^{-1}}V_{r}V_{r^{-1}s} = V_{r^{-1}s} = V_{t}$$

Example (Exel-Renault interaction groups; 2007)

Suppose there is a cocycle for the action θ , that is, a continuous map $\omega : P \times X \rightarrow (0, 1]$ that satisfies

•
$$\sum_{y \in \theta_t^{-1}(x)} \omega(t, y) = 1.$$

• $\omega(rs, x) = \omega(r, x)\omega(s, \theta_r(x))$
• $\omega(s, x)W_r(C_{x,y}^{s,r}) = \omega(r, x)W_s(C_{x,y}^{r,s})$
Then there is an interaction group $V^{\omega} : G \to B(C(X))$ such that, if
 $t = r^{-1}s, r, s \in P$, then $V_t^{\omega}(a) = \sum_{y \in \theta_r^{-1}(x)} \omega(r, y)a(\theta_s(y))$. The cocycle
can be interpreted as an inverse system of measures, whose limit is a
measure that defines the conditional expectation F.

Example (Iterated function systems, G. de Castro, 2009)

 $\gamma, \gamma_1, \ldots, \gamma_d : X \to X$ continuous, such that $\gamma\gamma_i = id_X$, $\forall i$. If α and α_i are the endomorphisms induced by γ and γ_i on A := C(X), then $\mathcal{L} := \frac{1}{d} \sum_{i=1}^{d} \alpha_i$ is a transfer operator for α . Then we have an interaction group $V : \mathbb{Z} \to B(A)$.

Example (IFS+Exel-Renault interaction group)

When $X = \biguplus_{i=1}^{d} \gamma_i(X)$ ("strong separation condition"), V is an Exel-Renault interaction group, with cocycle $\omega(n, y) = 1/d^n$. We may suppose $X = \{1, ..., d\}^{\mathbb{N}}, \gamma(x)(j) = x(j+1),$ $\gamma_i(x)(j) = \begin{cases} i & \text{if } j = 0\\ x(j-1) & \text{if } j \ge 1 \end{cases}.$ Let $Y := \{1, \ldots, d\}^{\mathbb{Z}}, \tilde{\gamma} : Y \to Y$ such that $\tilde{\gamma}(y)(j) = y(j+1)$, and $\pi: Y \to X$ the restriction, B = C(Y), $\beta: B \to B$ the dual map of $\tilde{\gamma}$, and $i: A \to B$ the dual map of π . Note that $\pi \tilde{\gamma}^n = \gamma^n \pi$, $\forall n \in \mathbb{N}$. Next define $au_i: X \to Y \text{ such that } au_i(x)(j) = \begin{cases} i & \text{if } j < 0 \\ x(j) & \text{if } j \geq 0 \end{cases}.$ Then $\pi \tau_i = id_X$ and $\rho_i i = id_A$, where ρ_i is the dual map of τ_i . Define $F_i, F: B \to B$ as $F_i := i\rho_i$, and $F = \frac{1}{d} \sum_{i=1}^d F_i$. Then F is a conditional expectation with range i(A), and $F\beta^n i = iV_n$, $\forall n \in \mathbb{Z}$.

- F. Abadie, Enveloping actions and Takai duality for partial actions, J. Funct. Anal. 197 (2003), 14–67.
- F. Abadie, L. Martí, *On the amenability of partial and enveloping actions*, Proc. Amer. Math. Soc. **137** (2009), 3689–3693.
- Gilles G. de Castro, *C**-*algebras associated with iterated function systems*. Operator structures and dynamical systems, 27–37, Contemp. Math., 503, Amer. Math. Soc., Providence, RI, 2009
- M. Dokuchaev, R. Exel, Associativity of Crossed Products by Partial Actions, Enveloping Actions and Partial Representations, Trans. Amer. Math. Soc. **357** (2005), 1931–1952.
- R. Exel, *Partial actions of groups and actions of inverse semigroups*, Proc. Amer. Math. Soc., **126** (1998), 3481-3494.

- Ruy Exel, A new look at the crossed-product of a C*-algebra by a semigroup of endomorphisms, Ergodic Theory Dynam. Systems 28 (2008), no 3, 749–789. [arXiv:math.OA/0511061].
- Ruy Exel, Jean Renault, Semigroups of local homeomorphisms and interaction groups, Ergodic Theory Dynam. Systems 27 (2007), no. 6, 1737–1771. [arXiv:math.OA/0608589].
- Marcelo Laca, *From endomorphisms to automorphisms and back: dilations and full corners*, J. London Math. Soc. (2) **61** (2000), no. 3, 893–904.