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1 Representations of kpar (G ) ←→ partial representations of G .

2 Representations of a partial crossed product ←→ covariant
representations of the corresponding partial system.

3 Partial representations 6= partial actions.

4 Dilation of partial representations should be related with globalization
of partial actions.

5 Application of the existence of enveloping actions: if v : G → B(H) is
a partial representation of a discrete group G on a Hilbert space H,
there exist:

a Hilbert space K which contains H as a Hilbert subspace,
a unitary representation u : G → B(K ),
an orthogonal projection P : K → H,

such that vt = Put |H , ∀t ∈ G .

6 Interaction groups.
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Dilation of partial representations on sets, modules and
algebras

1 A partial action α on a commutative C ∗-algebra has an enveloping
action if and only if the graph of α̂ is closed (FA, 2003).

2 Corollary: a partial action on a commutative and unital C ∗-algebra
has an enveloping action iff every ideal of the partial action is unital.

3 A partial action on a unital algebra has an enveloping action iff every
ideal of the partial action is unital (Dokuchaev-Exel, 2005).

4 Observation: in the proof of the latter result the authors dilate the
partial representation v : G → Endalg (A) such that vt(a) = αt(a1t−1).
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Definition

A partial homomorphism of a group G into a monoid S is a map
v : G → S such that

ve = 1S , where e is the unit element of G.

vrvr−1vs = vrvr−1s , ∀r , s ∈ G

vrvs−1vs = vrs−1vs , ∀r , s ∈ G

When S = EndC (X ), for certain object X in a category C , we say that v
is a partial representation of G on the object X .

Proposition (Structure of a partial representation)

Let v : G → EndSets(X ) be a partial representation, Xr := vr (X ),
πr := vrvr−1 , and αr : Xr−1 → Xr such that αr (x) = vr (x), ∀r ∈ G . Then:

1 π2
r = πr , πr (X ) = Xr , and πrπs = πsπr , ∀r , s ∈ G .

2 vr = αrπr−1 , ∀r ∈ G .

3 α := ({Xr}, {αr}) is a partial action of G on X .
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Dilations of partial representations

Example (model)

Let Y be a set, u : G → AutSets(Y ) a representation of G on Y , and
Q : Y → Y such that Q2 = Q. Suppose in additon that QrQs = QsQr ,
∀r , s ∈ G , where Qr = urQur−1 . If X := Q(Y ) and v : G → EndSets(X ) is
given by vt := Qut |X . Then v is a partial representation of G on X .

Definition

Let C be a category. We define a category TC .

Objects: (Y , u,Q) such that: Y ∈ Ob(C ), u : G → AutC (Y ),
Q ∈ EndC (Y ) is such that Q2 = Q and QrQs = QsQr ,
∀r , s ∈ G .

Morphisms: ϕ : (Y , u,Q)→ (Y ′, u′,Q ′) is ϕ ∈ HomC (Y ,Y ′) such that
ϕut = u′tϕ and ϕQ = Q ′ϕ.
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Definition

Let C be one of the following categories: Sets, R-mod, or k-algebras. A
dilation of a partial representation v : G → EndC (X ) is a pair (j ,T ) such
that:

1 T = (Y , u,Q) ∈ Ob(TC )

2 j ∈ HomC (X ,Y ) is injective, and Q(Y ) = j(X ). In the case of
k-algebras we also require that j(X ) is an ideal of Y .

3 jvt = Qut j , ∀t ∈ G .

The dilation is called minimal when Y is generated by
⋃

t∈G ut(j(X )).

Remark

In k-algebras, the condition j(X ) � Y implies vt(X ) � X , ∀t.

Proposition

If (j , (Y , u,Q)) is a dilation of a partial representation v = πα, then

α
j∼= u|j(X ). If the dilation is minimal, u is a minimal globalization of α.
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Proof.

If x ∈ Xt−1 , then

jαt(x) = Qut j(x) = QQtut j(x) = QtQut j(x) ∈ ut(j(X )) ∩ j(X ).

Now if j(y) = ut j(z) ∈ j(X ) ∩ ut j(X ):

y = vt(z) and j(z) = Qj(z) = Qut−1 j(y) = jvt−1(y)

It follows y = αt(z), j(Xt) = ut(j(X )) ∩ j(X ) and j(αt(z)) = ut j(z).

Theorem

Any partial representation v : G → EndSets(X ) admits a dilation. If the
dilation D = (j ,T ) is minimal, then for any other dilation D ′ = (j ′,T ′)
there exists a unique morphism ϕ : D → D ′. In particular any two minimal
dilations of v are isomorphic.
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Proof.

X̄ = {y : G → X}.
ρ : G ×X̄ → X̄ such that ρt(y)(s) := y(st).

j : X → X̄ : j(x)(t) := vt(x), and Y =
⋃

t∈G ρt(j(X )).

Q : Y → Y : Q(y) := j(y(e)), and ut = ρt |Y .

j(Xt) = j(X ) ∩ ut(j(X ))

ut j(x) = jαt(x), ∀x ∈ Xt−1 and t ∈ G .

QQt(y)|s = vsvt(y(t−1)) and QtQ(y)|s = vstvt−1(y(e)).

QQt(ur j(x))|s = vsvtvt−1r (x) and QtQ(ur j(x))|s = vstvt−1vr (x).

Then:

QQt = QtQ on Y

Qut j = j(ut(j(x))(e)) = j(j(x)(t)) = j(vt(x)) = jvt(x)

The existence and uniqueness of the map ϕ follows from the universal
property of the enveloping action. Finally:

Q ′ϕut j = Q ′u′tϕj = Q ′u′t j
′ = j ′vt = ϕjvt = ϕQut j

Fernando Abadie Vicens (CMAT) Dilations of partial representations PARS, 11-15/5/2014 9 / 22



Dilations of partial representations on modules

Theorem

Any partial representation v : G → EndR(M) admits a minimal dilation
(j , (N, u,Q)) which is faithful, i.e.: Qut(n) = 0 ∀t ∈ G implies n = 0. In
this case u|j(M)

∼= α, where α is the partial action associated with v.
Moreover, if D is a faithful and minimal dilation of v and
D ′ = (j ′, (N ′, u′,Q ′)) is another dilation of v , there exists a unique
morphism ϕ : D ′ → D such that ϕj ′ = j .
In particular any two minimal and faithful dilations of v are isomorphic.

Fernando Abadie Vicens (CMAT) Dilations of partial representations PARS, 11-15/5/2014 10 / 22



Proof.

M̄ = {y : G → M} with its natural structure of R-module.

ρ : G ×M̄ →M̄ such that ρt(y)(s) := y(st).

j : M →M̄: j(m)(t) := vt(m), and N = spant∈G ρt(j(M)).

Q : N → N: Q(m) := j(m(e)), and ut = ρt |N .

Then:

Qut j = jvt , ∀t ∈ G , and α ∼= u|j(M); therefore (j , u,N) is a minimal
globalization of α in the category of R-modules.

(j , (N, u,Q)) is faithful because Qρt(y) = j(y(t)).

If D ′ = (j ′, (N ′, u′,Q ′)) is another dilation of v , and
∑

t∈G u′t j
′(mt) = 0:

0 = Q ′u′r (
∑
t∈G

u′t j
′(mt)) =

∑
t∈G

j ′(vrt(mt)) = j ′(
∑
t∈G

vrt(mt)), ∀r ∈ G .

Then: 0 = j(
∑

t∈G vrt(mt)) = Qur (
∑

t∈G ut(j(mt))), ∀r .

Define ϕ : N ′ → N such that ϕ(
∑

t u′t j
′(m′t)) :=

∑
t ut j(m′t).
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Dilations of partial representations on algebras

Theorem

Let v : G → Endk−alg (A) be a partial representation such that vt(A) � A,
∀t ∈ G . Then v admits a minimal dilation (j ,T ) which is faithful (again:
Qut(b) = 0 ∀t ∈ G implies b = 0) and such that u|j(A)

∼= α, where α is
the partial action associated with v.
Moreover, if D = (j ,T ) is a faithful and minimal dilation of v and
D ′ = (j ′,T ′) is another dilation of v , there exists a unique morphism
ϕ : T ′ → T such that ϕj ′ = j .
In particular any two minimal and faithful dilations of v are isomorphic.
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Proof.

Consider again: Ā = {y : G → A} with its natural structure of
k-algebra; ρ : G ×Ā→ Ā such that ρt(y)(s) := y(st); j : A→ Ā:
j(a)(t) := vt(a).

Define B := 〈ρt(j(A)) : t ∈ G 〉, Q : B → B: Q(b) := j(b(e)), and
ut = ρt |B .

We have j(A) � B and B = spant∈G ρt j(A):

ut(a)j(a′)|s = vsvs−1(vst(a)vs(a′)) = vs(vt(a)a′) = j(vt(a)a′)|s

j(a)ut j(a′)|s = vsvs−1(vs(a)vst(a′)) = vs(avt(a′)) = j(avt(a′))|s

As in the case of partial representations on modules, (j , (B, u,Q)) is a
faithful and minimal dilation of v , α ∼= u|j(A); (j , u,B) is a minimal
globalization of α in the category of k-algebras, and if
D ′ = (j ′, (B ′, u′,Q ′)) is another dilation of v , the map ϕ : T ′ → T such
that ϕ(

∑
t u′t j

′(at)) :=
∑

t ut j(at) is a homomorphism that satisfies
ϕj ′ = j .
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Dilations of partial representations on Hilbert spaces

Recall:
1 C ∗p (G ) = C (X ) oα G , where

Xt = {x : G → {0, 1}/ x(e) = 1 = x(t)}, X = Xe .
αt : Xt−1 → Xt : αt(x)|s = x(t−1s)

2 (α,X ) has enveloping action (β,Y ): Y = {y : G → {0, 1} : y 6= 0}
-which is a Hausdorff space- and β given by the same formula as α.

3 If E ∗(G ) := C (Y ) oβ G , then E ∗(G )
MR∼ C ∗p (G ) (Morita-Rieffel

equivalence). In fact C ∗p (G ) is a hereditary subalgebra of E ∗(G ).

Then:

partial rep. v of G � corresponds to // unital rep. ρ of C ∗p (G )
_

induces

��
unitary rep. u of G

dilates

cov. rep.

(π̃, u)
�oo unital rep. ρ̃ of E ∗(G )�

decomposes as
oo

Fernando Abadie Vicens (CMAT) Dilations of partial representations PARS, 11-15/5/2014 14 / 22



The Morita-Rieffel equivalence C ∗p (G )
MR∼ E ∗(G ) follows from:

Theorem (FA 2003: reduced case; FA & Laura Mart́ı 2009: full case)

Let =(Bt)t∈G be a Fell bundle, E = (Et)t∈G a right ideal of B, and
A = (At)t∈G a sub-Fell bundle of B contained in E such that

1 AE = E .

2 EE∗ ⊆ A.

Then C ∗red(A) is a hereditary subalgebra of C ∗red(B) and C ∗(A) is a
hereditary subalgebra of C ∗(B). If, moreover, span(Bt ∩ E∗E) = Bt ,

∀t ∈ G , then C ∗red(A)
MR∼ C ∗red(B) and C ∗(A)

MR∼ C ∗(B).

Corollary (FA 2003: reduced case; FA & L. Mart́ı 2009: full case)

If βG × B → B is a globalization of the partial action α on A, then
A ored ,α G is a hereditary subalgebra of B ored ,β G , and A oα G is a
hereditary subalgebra of B oβ G . If β is the enveloping action of α, then

A ored ,α G
MR∼ B ored ,β G and A oα G

MR∼ B oβ G .
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Dilations of certain interaction groups

Definition

An interaction group is a triple (A,G ,V ) where A is a unital C ∗-algebra,
G is a group, and V is a map from G into B(A), which satisfies:

1 Vt is a positive unital map, ∀t ∈ G .

2 V is a partial representation.

3 Vt(ab) = Vt(a)Vt(b) if either a or b belongs to Vt−1(A).

Example

Let X be a compact Hausdorff space and θ : X → X a surjective
continuous map. Consider the unital injective endomorphism
α : C (X )→ C (X ) induced by θ: α(a) = a ◦ θ. Suppose there exists a
unital transfer operator for α, i.e., a positive linear map L : C (X )→ C (X )
such that L(α(a)b) = aL(b), ∀a, b ∈ C (X ). Then V : Z→ B(C (X ))

such that Vn =

{
αn n ≥ 0

L−n n ≤ 0
is an interaction group.
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Example

Suppose F : B → B is a conditional expectation with range A,
β : G × B → B is an action such that FrFs = FsFr , ∀r , s ∈ G , where
Fr = βrFβr−1 . If FβrF (1) = 1, ∀r , then V : G → B(A) such that
Vt = Fβt |A is an interaction group.

Theorem

Let P be a submonoid of a group G such that G = P−1P, and let α be an
action of P by unital injective endomorphisms of the unital C ∗-algebra A,
and suppose V : G → B(A) is an interaction group such that V |P = α.
Then V has a minimal dilation (i ,T ), where T = (B, β,F ) and i : A→ B
is an embedding, which has the following universal property. If
(i ′, (B ′, β′,F ′)) is another dilation of V , then there exists a unique
morphism φ : (B, β,F )→ (B ′, β′,F ′) such that φi = i ′. Therefore the
dilation (i ,T ) is unique up to isomorphism.
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Proof

Theorem (Marcelo Laca, 2000)

There exists a C ∗-dynamical system (B,G , β), unique up to isomorphism,
consisting of an action β of G by automorphisms of a C ∗-algebra B and
an embedding i : A→ B such that:

1 β dilates α, that is, βt ◦ i = i ◦ αt , for t in P, and

2 (B,G , β) is minimal, that is,
⋃

t∈P β
−1
t (i(A)) is dense in B.

There is a partial order in P: r ≤ s ⇐⇒ s = tr , for some t ∈ P. Suppose
r , s ∈ P, with r ≤ s, and ar , as ∈ A are such that βr−1(ar ) = βs−1(as),
then βsr−1(ar ) = as , so αsr−1(ar ) = as . Then:

Vs−1(as) = Vs−1αsr−1(ar ) = Vs−1Vsr−1(ar ) = Vs−1αsVr−1(ar ) = Vr−1(ar ).

Define F : B → B such that F (b) = Vt−1(βt(b)), ∀b ∈ βt−1(A). Suppose
t = r−1s ∈ G , with r , s ∈ P. We have

Fβt |A = Fβr−1βrt |A = Fβr−1αs = Vr−1αs = Vr−1VrVr−1s = Vr−1s = Vt
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Example (Exel-Renault interaction groups; 2007)

Suppose there is a cocycle for the action θ, that is, a continuous map
ω : P × X → (0, 1] that satisfies

1
∑

y∈θ−1
t (x) ω(t, y) = 1.

2 ω(rs, x) = ω(r , x)ω(s, θr (x))

3 ω(s, x)Wr (C s,r
x ,y ) = ω(r , x)Ws(C r ,s

x ,y )

Then there is an interaction group V ω : G → B(C (X )) such that, if
t = r−1s, r , s ∈ P, then V ω

t (a) =
∑

y∈θ−1
r (x) ω(r , y)a(θs(y)). The cocycle

can be interpreted as an inverse system of measures, whose limit is a
measure that defines the conditional expectation F .

Example (Iterated function systems, G. de Castro, 2009)

γ, γ1, . . . , γd : X → X continuous, such that γγi = idX , ∀i . If α and αi

are the endomorphisms induced by γ and γi on A := C (X ), then
L := 1

d

∑d
i=1 αi is a transfer operator for α. Then we have an interaction

group V : Z→ B(A).
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Example (IFS+Exel-Renault interaction group)

When X =
⊎d

i=1 γi (X ) (“strong separation condition”), V is an
Exel-Renault interaction group, with cocycle ω(n, y) = 1/dn. We may
suppose X = {1, . . . , d}N, γ(x)(j) = x(j + 1),

γi (x)(j) =

{
i if j = 0

x(j − 1) if j ≥ 1
.

Let Y := {1, . . . , d}Z, γ̃ : Y → Y such that γ̃(y)(j) = y(j + 1), and
π : Y → X the restriction, B = C (Y ), β : B → B the dual map of γ̃, and
i : A→ B the dual map of π. Note that πγ̃n = γnπ, ∀n ∈ N. Next define

τi : X → Y such that τi (x)(j) =

{
i if j < 0

x(j) if j ≥ 0
.

Then πτj = idX and ρj i = idA, where ρj is the dual map of τj . Define

Fj ,F : B → B as Fj := iρj , and F = 1
d

∑d
j=1 Fj . Then F is a conditional

expectation with range i(A), and Fβni = iVn, ∀n ∈ Z.
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